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1. Research Aim 
Indoor air quality is a critical factor in human health and productivity. Studies have shown 
that the airborne transmission of viruses and bacteria is a major transmission route for 
respiratory infectious diseases. In addition to infectious particles, non-infectious particles 
also exist in indoor environments and can have adverse health effects. To address these 
issues, several studies have focused on understanding the mechanisms of particle 
transmission and developing effective control measures to improve system design and 
assist in real-time control.In recent years, the use of Markov chain technology has emerged 
as a promising approach for rapidly predicting spatial and temporal particle concentrations. 
Studies have demonstrated that the calculation speed of the Markov chain model is faster 
than that of the Eulerian and Lagrangian methods while maintaining the same level of 
computational accuracy.  
The state transition matrix is a crucial factor in achieving computational accuracy in the 
Markov chain model. The size of the matrix depends on the resolution of the state, which in 
turn is determined by dividing the state into coarse and fine. Coarse state division is 
usually based on the size of the spatial dimension and determined by the user, without any 
fixed principles for division, which affects the computational accuracy. To ensure both 
calculation speed and acceptable prediction accuracy, a method for dividing non-uniform 
states based on flow field velocity is proposed in this study for the Markov chain model 
combined with CFD. This method obtains a coarse Markov matrix with fast calculation 
speed, and the non-uniform division method reduces the difference within a single state, 
thereby improving the calculation accuracy. 
 
2. Research Method 
 
2.1 Markov chain model for transient particle transport 
 
The homogeneous Markov chain technique has been proven to describe the particle 
transport process in space. For a fixed flow field, its implementation is based on several 
assumptions: 
1) The future distribution of contaminants depends only on the current state and transition 

matrix. 
2) The transition matrix is fixed. 
3) The contaminants fully follow the airflow. 
4) Particles mix uniformly in each state. 
Previous studies have shown that when particles are smaller than 3–5 μm in diameter, 
their motion is determined by passive scalar transport. To satisfy the assumption that the 
Markov chain is applied to particle transport, inertial effects must be ignored. However, 
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particles larger than 3 μm are significantly impacted by inertial effects, resulting in 
significant errors when using the one-step homogeneous Markov chain method. Therefore, 
this method is primarily used for modelling particle transport for particles smaller than 3 
μm in diameter and is suitable for various particles commonly found indoors, such as the 
rapidly evaporating droplet nuclei of human exhalation and most airborne bacteria. 
Assume that the domain contains n states, including n-1 spatial states and one state 
assigned as the extra space for the particles moving out of the computational domain. The 
transition matrix Pij of this Markov chain model can be written as:  
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where Pij is the probability that contaminants transport from state i to j within one 
time step ∆t, and the transition probability satisfies the following property:  
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Assuming that particles do not re-enter space after being expelled, 
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When the source of location is released in m state, the probability vector at time t is 
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After one time step ∆t, the probability vector of particle distribution in space is expressed as 
 ,t t t i ijPθ θ+∆ =   (5) 

The vector Nt represents the number of particles in each state at time t, and the 
number of particles Nt+∆t in each state after one ∆t can be expressed as a vector. 
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The number of particles in the j state can be expressed as 
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After multiple time steps, the probability vector of particle distribution can be 
expressed as 
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When it is a pulse source, the number of particles entering m state within every ∆t 
time step is S, then the number of particles Sm,t+∆t in m state after k∆t time steps can 
be expressed as 
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The number of particles in each state can be represented by the following vectors: 
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The particle concentration in the state is expressed as 
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where Ct,i is the particle concentration of state i at time t, Nt,i is the number of particles 
in state i at time t, and Vi is the volume of state i. 
 
2.2 Calculation of the transition probability matrix 
 
Methods for obtaining the transition matrix of the Markov chain model include 
flux-based methods, set theory methods, and Lagrangian tracking. The flux-based 
method calculates the transition matrix based on the airflow between CFD grids and 
has been used several times in Chen’s studies. The set theory method helps calculate 
the transition matrix by tracking the transfer of edge particles and the area of 
intersection between them before and after a time step, which is complicated, difficult 
to be accurately calculated in simulations, and mainly used in two-dimensional cases. 
The Lagrangian tracking method is considered to be faster, has the weakest 
restrictions on the time step, and is suitable for three-dimensional calculations. 
Therefore, it was used in this study to obtain the transition matrix. Using Lagrangian 
random tracking to obtain the state transition matrix was first proposed by Chen et al. 
[23]. This method first solves the airflow field using CFD, releases a certain number of 
particles in each unit, and uses Lagrangian tracking and random walk models to 
calculate the number of particles moving from states i to j in Δt. The percentage of 
transferred particles to the total number of particles is taken as the transition 
probability. The transition probabilities Pi,i,t and Pi,j,t can be expressed as: 
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In this study, the flow field is assumed to be fixed, the particle transport is assumed to 
be unaffected by the flow field, and the instantaneous diffusion of particles in the 
chamber with time is calculated. The RNG k-ε model is used to simulate the 
continuous phase flow field, which achieves the best overall performance in terms of 
accuracy, computational efficiency, and robustness; its formulation can be found in the 
Fluent manual. The DPM is used to calculate the discrete phase particles, which 
tracks particles in the Lagrangian coordinate system by solving for Newton’s second 
law of motion. The DPM requires only one execution throughout the computational 
process and is used to obtain particle transfer at one time step.  
 
2.3 Combination of the non-uniform dividing zone and Markov chain model 
 
According to the assumptions of the Markov chain technology currently applied to 
transient contaminant transport prediction, the model applied under a coarse Markov 
matrix to describe the particle transfer process is relatively crude. Initially, the 
pollutant is assumed to be uniformly distributed within the state where the pollution 
source is located. After one time step, the particles follow the airflow and transfer to 
other states, and the pollutant is assumed to be uniformly distributed in each state. In 
this process, the assumption that the percentage of particles transferred to other states 
following the airflow, known as the transition probability, remains constant and can 
lead to errors in each step of the calculation due to non-uniform particle distribution in 



each state. In reality, particles leaving state i and arriving at state j do not 
immediately distribute uniformly within state j as assumed. Therefore, the transition 
probabilities of particles in each subsequent time step may not be the same as those in 
the initial time step, which is one of the reasons for the deviation in the Markov chain 
model calculation. Chen also discussed this issue in his research, stating that owing to 
the unevenness of particle concentration in different states, the accuracy of the Markov 
chain method in different states may differ. To reduce the prediction error caused by 
this factor, particles should be distributed as uniformly as possible within each state, 
or the flow field within each state should be made as uniform as possible. However, it is 
difficult to distribute particles uniformly within the state because particle motion is 
influenced by the flow field. When the airflow in a single state is similar, particle 
motion within the state will also be more uniform, reducing the error caused by uneven 
particle distribution. Therefore, this study proposes dividing the flow field into 
non-uniform states and applying the Markov chain model prediction method 
accordingly. 
The main process of this algorithm is illustrated in Fig. 1. First, the method divides the 
flow field into Nsub of sub-layers in each direction separately, with the sub-layer in one 
direction generated by an equal thickness criterion, and the sub-layers in each 
direction are merged according to the velocity to obtain the combination scheme of 
sub-layers in each direction. The grid classification into the corresponding sub-layer 
areas is performed at the coordinates of the cell centre. Finally, the layers in each 
direction are merged to obtain a non-uniform grid. In this study, the acquisition of 
non-uniform states for the Markov chain model is based on the algorithm mentioned. 
In fact, various methods are available for dividing the flow field. However, the main 
objective of this study is to explore the accuracy of the model based on non-uniform 
states. The focus of the study is not on the state division method itself; therefore, we 
only provide an example of using this method to divide the non-uniform states for the 
Markov chain model. 

 
Fig. 1 Main procedure for dividing non-uniform states realized by the ‘precise sub-layer recomposition’ 

algorithm. 
 
3. Research Result 
 
3.1 Experimental verification 
 
Fig. 2 shows the dimensions of the chamber room, where the inlet and outlet are 
located at 2.1 m and 0.3 m above the ground, respectively. Both the inlet and outlet 
have a size of 0.3 m × 0.3 m, and the average supply-air velocity magnitude is 0.84 m/s 
with an incidence angle of 10°. After the flow field became stable, particles with a size 



of 1 μm were injected into the chamber. After obtaining steady-state flow field data, the 
coordinates and velocity information of all grids were imported into the Python-based 
platform to construct a non-uniform state and further calculate the transition matrix. 
The functions performed by the platform include coordinate partitioning, sub-layer 
cutting, sub-layer merging, construction of the transition matrix under non-uniform 
states, and prediction of transient contaminant transport. In this model, the sub-layer 
thickness was set to 0.05 m, and the chamber was transformed into 36 zones, with the 
removed zones labeled as State 37, as shown in Fig. 3. Based on the flow field data and 
Lagrangian tracking method calculation results, a 37×37 transition probability matrix 
was obtained. Throughout the contaminant transport period, the particle 
concentration in each state was normalized based on the initial released particle 
number. The initial probability vector when the pollution source is located in State 20. 
In this experiment, the particle density at a distance of 0.9 m from the ground and at 
the inlet were measured using OPC with a sampling interval of 21 s. Notably, the 
Markov chain model can only be used calculate the transient particle transport from a 
pulse source. To calculate the transient distribution of the continuously released source, 
a certain amount of particles must be added at the source location at each time step, as 
shown in Eq. 11. Therefore, the inlet concentration must be divided into several pulse 
sources with a duration of one time step. In this study, the same setting as Zhang’s 
study was adopted, and linear interpolation was used to calculate the inlet distribution 
for each time step with a time step of 1 s. 

  

Fig. 2 Configuration of the chamber 
and measuring point location. Fig. 3 States of chamber 

 
Fig. 4 compares the numerical calculation results of transient particle concentration 
and the experimental measurements and displays the inlet data of the experimental 
measurements. The predicted results of Markov chain models with uniform and 
non-uniform states are also provided. The red and green lines represent the results 
calculated using the Markov chain model with non-uniform and uniform states, 
respectively. During the entire experimental measurement process, the particle 
density at the inlet changed rapidly during the initial period, and the peak particle 
concentration at the measurement point in the experiment occurred later than the 
concentration peak at the inlet. Both models using uniform and non-uniform state 
division methods showed this characteristic in their predictions. This is because the 
state where the measurement point was located is at a certain distance from the state 
at the inlet, resulting in a delayed response. The calculation results of the non-uniform 
state model were more similar to the experimental data before 1200 s. After the inlet 
conditions became relatively stable, the prediction deviation of the uniform states 
decreased gradually, and the prediction results of the two partition methods became 
better. This may be because with time, the indoor contaminant gradually diffuses in 
the room, and the impact of velocity differences within uniform states decreases, 
leading to a reduction in prediction errors in the later stages. The velocity differences 
within non-uniform states are small, which ensures the predictive accuracy of the 
model when the pollutant diffusion is insufficient. Furthermore, when the inlet 



particle concentration decreases and reaches a relatively stable state with periodic 
oscillations, the concentration predicted by the non-uniform Markov chain model also 
exhibits periodic oscillations, showing a trend similar to the inlet condition. Overall, 
the Markov chain model with non-uniform states prediction agrees with the results 
and trend of the experiment, and its predictive performance is better than that of the 
Markov chain model with uniform states. 
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Fig. 4 Comparison between the numerical results for transient particle concentration 

of the Markov chain model and the experimental data at 0.9 m. 
 
3.2 Application of different flow fields 
 
The Markov chain model with non-uniform state partitioning is applicable to different 
flow fields and has higher prediction accuracy. For Case A, the time step of the Markov 
chain model is set to 10 s, and the comparison of particle transfer results over a period 
of time is shown in Fig. 5. Owing to the slanting direction of the air flow and the 
diffusion of particles outside the jet axis, the concentration of particles in States 3 and 
11, located on both sides of the source in the downward direction, increases rapidly and 
to a higher level. Compared to the CFD simulation results, the Markov chain model 
slightly underpredicts the peak concentration but still accurately predicts the trend of 
particle concentration and captures the state where the peak occurs. Overall, the 
prediction of the model is reliable. 
Fig. 6 shows the size of the cleanroom of case B. There were two air supply ports on the 
ceiling, which vertically supply air at a velocity of 1.0 m/s. Regarding Case B, the time 
step of the Markov chain model was set to 5 s. Figs. 7 and 8, respectively, show the 
variation of particle concentration in each state over time when the source is located in 
States 3 and 7. The blue lines represent the predicted probability by the Markov chain 
model, and the grey lines represent the normalized particle concentration obtained by 
CFD. When the source is located in State 3, the particles follow the airflow to move to 
States 2 and 6, and then the pollutant in State 6 moves to State 9. Fig. 7 shows that 
the peak of State 9 is significantly later than those of States 2 and 6. When the source 
is located in State 7, a similar situation is observed where particles first reach the 
adjacent States 4 and 10, and approximately 10 s later, States 1 and 13 reach the peak 
concentration. When the source is located in State 7, the particle concentration in the 
vast majority of states is generally higher than when the source is located in State 3, 
which is due to some particles being directly exhausted from the exhaust port at State 
3. Overall, the predicted results of the model are in good agreement. 



 
Fig. 5 Comparison of trends of particle concentration versus time with a pulsed 

particle source in state 20. 

 
Fig. 2 Configuration of the ventilated chamber of case B. 



 
Fig. 7 Comparison of the trends of the normalized particle concentrations vs. time as 
obtained by the Markov chain model and CFD simulation with a source in State 3. 

 

 
Fig. 8 Comparison of the trends of the normalized particle concentrations vs. time as 
obtained by the Markov chain model and CFD simulation with a source in State 7. 

 
Additionally, the prediction performance of the Markov chain model with non-uniform 
and uniform states was compared, and the normalized root mean square deviation 
(NRMSD) was used to quantify the difference between the two, as defined using Eq. 17. 
To avoid the randomness of setting a single source, this study conducted a 
comprehensive comparison. Taking Case B as an example, each state was set as the 
source location, and 15 calculations were performed. The calculation results of each 
time step were compared, as shown in Fig. 9. The horizontal axis represents the 
running time, and the vertical axis represents the state where the source is located. 
Each scatter represents the NRMSD of the concentration of particles in the entire 



room between the Markov chain model and CFD. The blue and grey scatters represent 
the calculation deviation of the model under uniform and non-uniform states, 
respectively. In each time step, the scatters with a smaller area are always located 
above the others. Only one colour of scatter indicates that there is almost no difference 
in the calculation accuracy between the two methods. Evidently, for most time steps, 
the grey scatters are bigger than the blue ones, indicating that the non-uniform 
method has better calculation results. When the source is located in States 1, 3, 13, 
and 15, the non-uniform model performs better in the early stages. This is because 
these four states are located in the corners of the room, and when the particles first 
start to transfer, some of them are directly exhausted from the exhaust port, whereas 
others are left in the current state owing to the eddy current phenomenon of the flow 
field, resulting to an increased proportion of absorbed states. The division of 
non-uniform states distinguishes this part. For all calculation conditions, the average 
NRMSDs of the models for uniform and non-uniform states were 2.4% and 1.9%, 
respectively. Using the non-uniform state method reduced the NRMSD by 20%, 
indicating that it resulted in better prediction performance. Notably, previous studies 
assumed that particles were uniformly distributed within the source state, which 
results in the volumes filled by particles in uniform and non-uniform states not being 
completely identical, making the comparison insufficiently rigorous. However, 
although there were slight differences in the initial conditions of the sources after 
dividing them into different states, both datasets are compared based on their 
respective CFD calculation results as the true value. Therefore, comparing the 
NRMSDs of the two groups can reflect the difference in their prediction accuracy. Thus, 
we believe that this comparison method is feasible and effective. 
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Fig. 3 Comparison of the trends of the normalized particle concentrations vs. time as 
obtained by the Markov chain model and CFD simulation with a source in State 3. 

 



 
Fig. 4 Comparison of the trends of the normalized particle concentrations vs. time as 
obtained by the Markov chain model and CFD simulation with a source in State 7. 

 

 
Fig. 9 Comparison of prediction ability between non-uniform and uniform state 

division. 
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Summary・Figures 
Rapid and accurate prediction of the transient transport of contaminants is crucial. The 
use of coarse matrices for Markov chain models has a low computational cost. However, the 
coarse Markov states lack a method of partitioning. This study proposed a method of 
partitioning Markov chain states to improve the prediction accuracy of models. By dividing 
the non-uniform states based on the flow field velocity, the differences within individual 
states were reduced, thereby reducing computational bias. The method was validated using 
both experimental data and CFD simulation data. The results show that: 
1) The Markov chain model based on non-uniform states effectively predicts transient 

particle transport in steady-state flow fields. The acceptability of the Markov chain 
model with non-uniform states for predicting the concentration of contaminants in the 
target area was demonstrated using experimental data on transient contaminants. 

2) Compared to the model with uniform states, the Markov chain model with non-uniform 
states has higher prediction accuracy. A Markov chain model with non-uniform states 
has been demonstrated to be closer to experimental results. Furthermore, comparison 
with CFD simulation data has shown that the accuracy of the non-uniform state model 
in predicting contaminant transport is acceptable under different flow fields.  

3) Refining the states around the source helps improve the prediction accuracy of 
contaminant distribution. When focusing on the early transfer of contaminants, the 
states near the source should be refined. 

4) The transfer matrix obtained under different time steps is affected by the brief 
concentration peak within the state, which affects the model's prediction results. The 
time step and state size should be adjusted according to the application requirements. 
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Procedures for obtaining non-uniform state-based Markov chain model and for 

simulating particle transport with the model. 
Comparison between the numerical results for transient particle concentration of 

the Markov chain model and the experimental data at 0.9 m 

 
 
 
 


